لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : word (..doc) ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 15 صفحه
قسمتی از متن word (..doc) :
1
حالت های مختلف بستن مدارات Op-Amp
تقویت کننده معکوس (Inverting Amplifier)
تقویت کننده مستقیم
دنبال کننده و لتاژ
تقویت کننده ولتاژ به جریان
تقویت کننده جریان به ولتاژ
مدار نمونه با استفاده از دیود
مدار انتگرال گیر
مدار مشتق گیر
مدار جمع کننده
مدار تفریق کننده
در زیر با نحوه های مختلف بستن مدارات آپ امپی آشنا می شوید
تقویت کننده معکوس (Inverting Amplifier)
با توجه به اینکه زمین شده است. بنابراین است.در حالت ایده آل است.در نتیجه
می شود.
با توجه به بالا بودن مقاومت ورودی آپ امپ در پایه منفی و با توجه به قوانین گره می توان نتیجه گرفت.
(منظور از IZ1 جریان امپدانس یا مقاومت Z1 می باشد)
1
حالت های مختلف بستن مدارات Op-Amp
تقویت کننده معکوس (Inverting Amplifier)
تقویت کننده مستقیم
دنبال کننده و لتاژ
تقویت کننده ولتاژ به جریان
تقویت کننده جریان به ولتاژ
مدار نمونه با استفاده از دیود
مدار انتگرال گیر
مدار مشتق گیر
مدار جمع کننده
مدار تفریق کننده
در زیر با نحوه های مختلف بستن مدارات آپ امپی آشنا می شوید
تقویت کننده معکوس (Inverting Amplifier)
با توجه به اینکه زمین شده است. بنابراین است.در حالت ایده آل است.در نتیجه
می شود.
با توجه به بالا بودن مقاومت ورودی آپ امپ در پایه منفی و با توجه به قوانین گره می توان نتیجه گرفت.
(منظور از IZ1 جریان امپدانس یا مقاومت Z1 می باشد)
2
می شود.در واقع در اینجا فرض کردیم IZ1 جریان وارد شونده به گره موجود در پایه منفی آپ امپ است.و IZ2 جریان خارج شونده از این گره است.
با توجه به قانون اهم و جهت جریان و صفر بودن جریان ورودی در آپ امپ رابطه زیر را برای IZ1 و IZ2 داریم.
با توجه به فرمول فوق و تساوی IZ1 و IZ2 رابطه زیر بدست می آید.
در این فرمول خروجی ضریب منفی یا برعکس شده ورودی است.
اگر مقاومت فیدبک و مقاومت ورودی یکسان باشند.،مقدار گین برابر منفی یک می شود.در این حالت آپ امپ به صورت یک بافر NOT یا معکوس عمل می کند.
تقویت کننده مستقیم
در این حالت برعکس حالت قبلی تحریک آپ امپ از پایه مثبت صورت می گیرد.همانطور که در شکل زیر مشخص است. است.
با توجه به هم پتناسیل بودن پایه های ورودی منفی و مثبت در حالت ایده آل داریم
با در نظر گرفتن قانون اهم در مورد جریان IZ2 رابطه زیر را داریم
3
همانطور که دیدید می باشد.در نتیجه فرمول فوق به صورت زیر ساده می شود.
با توجه به قوانین گره و صفر بودن جریان ورودی آپ امپ در حالت ایده آل و روابط فوق رابطه زیر را داریم
با ساده کردن رابطه فوق داریم
در این حالت خروجی مضرب مثبتی از ورودی است.
دنبال کننده و لتاژ
در یک آپ امپ ایده آل که به صورت زیر بسته
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : word (..doc) ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 31 صفحه
قسمتی از متن word (..doc) :
1
1
موضوع :
حجم نمونه و جامعة آماری
1
3
حجم نمونه و جامعة آماری
در تعریف نمونه یا جمعیت نمونه باید گفت، در معنای کلی هر فرد از جامعه را میتوان نمونة آن جامعه خواند. اما در معنای متعارف، در همان جامعه به آن جزئی نمونه گفته میشود که معرف جامعه باشد. منظور از ظرط معرف بودن آن است که همه صفات جامعه، خاصه آن صفاتی که از لحاظ موضوع تحقیق دارای اهمیت است به تناسب در نمونه وجود داشته باشد و بتوان نتایج حاصل از آن را به کل جامعه آماری پس بطور کلی و با توجه به توضیحات فوق در تعریف حجم نمونه میتوان گفت که حجم نمونه، تعداد کل عناصر موجود در نمونه است.
اما منظور از جامعة آماری همان جامعه اصلی است که از آن نمونهای نمایا، یا معرف بدست آمده باشد. جامعة آماری را در مواردی جمعیت و در مواردی دیگر نیز حیطه میخوانند. حجم جامعة آماری شامل مجموعه عناصر موجود در جامعه آماری است که مبنای محاسبه در نمونهگیری محسوب میشود.
1
4
روش شناسی تحقیق
روش مورد استفاده در این تحقیق، روش پیمایشی یا Surrey میباشد. در این تحقیق برای جمع آوری اطلاعات از دو تکنیک استفاده نمودهایم:
1- کتابخانهای: برای دستیابی به آراء و نظریههای بزرگان و هم چنین برای آشنا شدن با سابقة تاریخی موضوع از این روش سود جستهایم.
2- پرسشنامهای: این تکنیک عبارت است از مطرح کردن یکسری پرسش برای مجموعهای از پاسخوگیان که غالباً معرف یک جمعیت وسیعتر دربارة وضعیت اجتماعی شغلی و خانوادگیشان دربارة عقاید و ایستارهایشان راجع به مسائل اجتماعی انسانی، دنیوی، معنوی و دربارة انتظارتشان، سطح معرفت یا آگاهیشان در مورد یک حادثه یا یک مسئله دربارة هر نکتهای که اطلاع آن برای محقق جالب است. بررسی پرسشنامهای با چشمانداز جامعه شناختی، از نظرسنجی ساده عمیق متمایز است. برای آنکه در بررسی جامعه شناختی باز، یبن فرضیههای نظری در آزمون همبستگیهایی که این فرضیهها توصیه میکنند، در نظر است از این لحاظ این بررسی به مراتب سنجیدهتر و پایدارتر از نظر سنجیها هستند.
1
4
به همین منظور و دستیابی به نتیجه و تعیین علل گرایش جوانان به مواد مخدر، پرسشنامهای با 28 سئوال مطرح نمودیم و در اختیار جامعة آماری خود قرار دادیم.
تعریف مفاهیم نظری
1- فقر- شایان مهر، علی رضا، دایره المعارف تطبیقی (کتاب دوم)، انتشارات کیهان، سال 79، صفحة 456.
از دیدگاه تنازعی، فقر یک نتیجه محتوم استشار است که روابط نابرابر میان طبقات اجتماعی ایجاد میکند. در نتیجه ثروتمندان شرایط کار و سطح دستمزدها را به دلخواه خود معین میکنند و طبقه زحمتکش چارهای جز تن به این وضعیت ندارد. این طبقه به علت نداشتن قدرت، قادر به تغییر روابط نابرابر نیست و ادامه این وضعیت اجتنابناپذیر است.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : word (..doc) ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 55 صفحه
قسمتی از متن word (..doc) :
عنوان: حبابزدائی از مذاب شیشه
مقدمه:
اگر حبابهای گازی و ذرات سیلیکاتی ذوب نشده در مذاب باقیمانده باشد کیفیت محصولات شیشه افت میکند. لذا هر چه عیوب ناشی از وجود حبابها در محصولات شیشه کمتر باشد، بهتر است. برای مثال حضور 6 حباب در هر تن شیشه تلویزیون موجب به هدر رفتن 10 درصد محصولات نهائی میگردد و اینگونه عیوب در خیلی از موارد دیگر مثل شیشة اتومبیل، ساختمان، ظروف و غیره میتواند اثرات خیلی زیانآور اقتصادی داشته باشد، لذا عمل حبابزدائی یکی از اساسیترین کارها در صنعت تولید شیشه میباشد.
حرارت در کورههای ذوب شیشه به صورت تابشی از بالای محفظة مذاب تأمین میگردد، اگر حبابها بالا بیایند و در سطح مذاب جمع شوند، تشکیل لایهای کف حبابی روی سطح مذاب میدهند و باعث جلوگیری از انتقال حرارت تابشی به عمق مذاب میشوند و اثرات خیلی مخربی در این حالت در راندمان انرژی، کیفیت شیشه، توید، انتشار آلودگی موجب میشوند.
عنوان: حبابزدائی از مذاب شیشه
مقدمه:
اگر حبابهای گازی و ذرات سیلیکاتی ذوب نشده در مذاب باقیمانده باشد کیفیت محصولات شیشه افت میکند. لذا هر چه عیوب ناشی از وجود حبابها در محصولات شیشه کمتر باشد، بهتر است. برای مثال حضور 6 حباب در هر تن شیشه تلویزیون موجب به هدر رفتن 10 درصد محصولات نهائی میگردد و اینگونه عیوب در خیلی از موارد دیگر مثل شیشة اتومبیل، ساختمان، ظروف و غیره میتواند اثرات خیلی زیانآور اقتصادی داشته باشد، لذا عمل حبابزدائی یکی از اساسیترین کارها در صنعت تولید شیشه میباشد.
حرارت در کورههای ذوب شیشه به صورت تابشی از بالای محفظة مذاب تأمین میگردد، اگر حبابها بالا بیایند و در سطح مذاب جمع شوند، تشکیل لایهای کف حبابی روی سطح مذاب میدهند و باعث جلوگیری از انتقال حرارت تابشی به عمق مذاب میشوند و اثرات خیلی مخربی در این حالت در راندمان انرژی، کیفیت شیشه، توید، انتشار آلودگی موجب میشوند.
طی پروسه ساخت شیشه، بچ ترکیبی شیشة وارد کوره مذاب شده و در آن جا به سبب مشعلهای حرارتی تمامی ترکیبات شیشه ذوب، و در اثر جریانات کنوکسیونی عمل یکنواختی مذاب انجام میگیرد. عمل ذوب مواد خام شیشه یک پروسة فیزیکوشیمیائی خیلی پیچیدهای است که شامل تعداد زیادی از واکنشهای شیمیائی و تبدیلات فازی در محدودة دمائی 800 الی 1200 میشود. برای مثال در تهیة شیشه و ظروفی واکنشهای شیمیائی پایهای زیر در بچ حاوی سیلیس، کربنات سدیم و کربنات کلسیم انجام میگیرد.
محدودة دمای 550 °C
600-83°C
720-900°C
600-900°C
گاز Co2 در نتیجه سه واکنش فوق در این نوع ترکیب شیشه تولید میشود، در مذاب نفوذ میکند. کسر کوچکی از این گاز در جوانهزنی غیریکنواخت حبابهای گازی درون یا زیربچ جوانهزنی میکند. برخی از این حبابها از درون بچ عبور و به فضای احتراق وارد میشود در صورتی که بقیه در مذاب گرفتار میشوند و تحت جریانات کنوکسیونی مذاب حمل میگردند. عوامل حبابزدا که در واکنشهای اکسیداسیون و احیای تعادلی در تولید یا و صرف گازها شرکت میکنند به منظور حذف حبابهای نامطلوب در مذاب شیشه به ترکیب افزوده میگردد. سه نوع از عوامل حبابزدا مورد استفاده قرار میگیرد:
1- اکسیدهای فلزی با ظرفیتهای متغیر به منظور ایجادگاز اکسیژن: Sb2O3، AS2O3، CeO2.
2- سولفات و سولفتیها که مخلوطی از گاز اکسیژن و So2 تولید میکنند.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : word (..doc) ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 22 صفحه
قسمتی از متن word (..doc) :
1
موسسه علامه قطب راوندی
عنوان
حد و پیوستگی
2
حد و پیوستگی
حد متغیر، متغیر X و عدد ثابت a را در نظر می گیریم اگر x بی نهایت به a نزدیک شود (از سمت چپ یا راست) بطوریکه فاصله x تا a از هر عدد بسیار کوچکی مانند e ( اپسیلون) کمتر شود ولی x بر a منطبق نگردد در آنصورت می گویند x به سمت a میل می کند و یا به عبارت دیگر، حد x برابر a میباشد، که در شکل زیر نشان داده شده است:
0
شکل
حد تابع: تابع fa= حد در نظر می گیریم اگر x به سمت a میل شد یعنی بی نهایت به a نزدیک شود آنصورت تابع (x)f ممکن است به سمت عددی مانند L، بی نهایت نزدیک شود که به آن، حد تابع می گویند و به صورت زیر نشان میدهند:
( حد f(x) وقتی که xبه سمت a میل میکند برابر با L است) limy=lim f(x)= L
مثال) تابع y=x+1 در نظر می گیریم. اگر x به عدد 3 نزدیک شود، y به عدد 4 نزدیک میگردد. نزدیک شدن x به 3 از دو سو امکان پذیر است، یکی اینکه با مقادیر کمتر از 3 (از سمت چپ) به سمت 3 میل کند و دیگر آنکه با مقادیر بزرگتر از 3 (از سمت راست) به سمت 3 میل میکند که در جدول زیر نشان داده شده است:
2/1
1/1
01/1
0001/1
999/1
99/1
9/1
2/2
x
2/4
1/4
01/4
0001/4
999/3
95/3
9/3
8/3
y
فرض کنیم تابع f در بازه باز (a,) تعریف شده باشد، عدد L را حد چپ f(x) در نقطه x0 می نامند. اگر بتوان f(x) را به هر اندازه دلخواه به L نزدیک کرد، به شرطی که عدد مثبت x-را به قدر کافی به صفر نزدیک کنیم و در این صورت می نویسند:
Lim(f)= L
نکته:
وقتی نوشته میشود lim f(x)=L به مقادیر x در بازه باز (a,) توجه داریم، نه خود و شرط اولیه وجود حد چپ در آن است که تابع در یک بازه بازی مانند (a,) تعریف شده باشد.
مثال: تابع f با ضابطه f(x)=[x] را در نظر می گیریم با توجه به نمودار تابع می توان نوشت:
Lim f(x)=1
Y
2
3
1
x -1
2 1
فرض کنیم f تابعی باشد که به ازای هر x از بازه باز (,b( تعریف شده باشد، عدد L را حد راست f(x) در نقطه می نامیم اگر بتوان f(x) را به هر اندازه دلخواه به L نزدیک کرد، به شرطی که عدد مثبت x- را به قدر کافی به صفر نزدیک کنیم. در این صورت می نویسند:
Lim f(x)=L
نکته:
وقتی نوشته میشود lim f(x)=L به مقادیر x درباره (,b) توجه داریم، نه خود و شرط اولیه وجود حد راست در آن است که تابع در یک بازه بازی مانند (,b) تعریف شده باشد.
مثال: تابع f را در نظر می گیریم.
y
x 1 0 -1
حد تابع در یک نقطه
منظور از حد تابع r(x) در نقطه x=a این است که حد چپ و راست تابع r(x) را در این نقطه بدست آوریم و در این دو حد با هم برابر شدند تابع f(x) در دارای حد میباشد علامت lim f(x) نمایش می دهیم بنابراین داریم:
Lim r(x)=lim r(x)= lim r(x)
توجه داشته باشیم که یک تابع در نقطه x=a در صورتی حد چپ یا راست دارد که حد بدست آمده، یک عدد حقیقی باشد نه موهومی.
مثال 1) حد تابع r(x) را وقتی x=1 بدست آورید.
حل)
4
Lim r(x)= lim (3x)= 3*1=3 حد چپ تابع r(x)
Lim r(x)=lim r(x)=3
Lim r(x)=lim (x+2)= 1+2=3 حد راست تابع r(x)
بنابراین حد تابع فوق وقتی x=1 برابر با 3 میباشد یعنی:
Lim r(x)=3
صور مبهم
عبارت مبهم به عبارتی اطلاق میشود که بی شمار جواب داشته باشد و دارای یک جواب منحص به فرد نباشد. برخی از صور مبهم عبارتند از
حد توابع وقتی x=a، اگر به صورت صور فرق درآید، برای رفع ابهام، بر حسب مورد از حالات زیر استفاده می کنیم:
حالت اول،
این حالت زمانی پیش می آید که به ازای مقدار خاصی از x هم صورت و هم مخرج صفر گردد. در اینگونه موارد، عاملی را که سبب صفر گردیدن صورت و مخرج شده است حذف می نماییم و پس از حذف آن عامل (عامل مشترک) مقدار x را برابر a قرار می دهیم. برای حذف این عوامل، روش های زیر را داریم.
الف) اگر تابع، کسری باشد صورت و مخرج را به عامل های اول تجزیه می کنیم تا جایی که رفع ابهام شود و اگر با روش های معمولی نتوانیم صورت و مخرج را به عامل های اول تجزیه کنیم صورت و مخرج را برابر x-a تقسیم می کنیم تا عامل دیگر تجزیه بدست آید.
مثال 1) حد تابع را وقتی x=1 بدست آورید.
حل)
(مبهم)
برای رفع ابهام، صورت و مخرج را به عامل های اول تجزیه می کنیم:
مثال 2) حد تابع را وقتی x=1 بدست آورید.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : word (..doc) ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 51 صفحه
قسمتی از متن word (..doc) :
حداقل عمق پوشش خاکی بر روی پلهای خاکی- فولادی
خلاصه: پهنای خاکی- فولادی از قابهای فولادی موجودار و انعطاف پذیر پوشانده شده درون خاک دانه ای خوب متراکم ساخته شده اند.
طراحی آنها براساس اندرکنش ترکیبی میان فشارهای خاک و جابه جایی های دیواره کانال انجام می شود. گسیختگی سازه ممکنست به سبب گسیختگی برشی یا کششی در پوشش خاکی روی کانال فولادی آغاز شود. بکارگیری ملاحظات طراحی ارائه شده در آئین نامه های مختلف، مانند آئین نامه طراحی پلهای بزرگراه کانادا، در جلوگیری از برخی مشکلات مربوط به گسیختگی خاک روی پلهای خاکی- فولادی با در نظر گرفتن حداقل عمق پوشش خاکی روی تاج کانال با توجه به شکل هندسی آن، موفقیت آمیز بوده است. با این وجود، الزامات آئین نامه موجود برای حداقل عمق پوشش جهت حداکثر دهانه به طول 62/7 متر و استفاده از قابهای سخت نشده با عمق اعوجاج 51 میلیمتر، بسط داده شده اند. اثر طول دهانه های بزرگتر یا بکارگیری قابهای موجدار صلب تر، پیشتر بررسی نشده و موضوع این مقاله است. مطالعه حاضر، جهت بررسی مجدد گسیختگی های ممکن خاک به سبب بارهای زنده وارده در مرکز (یعنی بارهایی که بصورت متقارن، حدودا در وسط دهانه کانال وارد می شوند) یا بارهای زنده خارج از مرکز، از تحلیل اجزاء محدود استفاده می کند. این بررسی، مربوط به کانالهای دایروی با دهانه بزرگتر از 24/15 متر و قوسهای 3/21 متری با موجهای عمیق است. نتیجه حاصله این است که علاوه بر هندسه کانال، ابعاد واقعی دهانه نیز بایستی جهت تعیین عمق لازم برای پوشش خاکی مورد توجه قرار گیرد.
معرفی: پلهای خاکی- فولادی از قابهای فولادی موجدار و انعطاف پذیر پوشانده شده در خاک دانه ای خوب متراکم شده ساخته شده اند. این پلها با دهانه هایی به طول حداکثر 62/7 متر با استفاده از قابهای فولادی با عمق اعوجاج (موج) 51 میلی متر ساخته شده اند در حالیکه بخشهای خاصی مانند سخت کننده ها برای دهانه های بزرگ بکار رفته اند. اخیرا، موجهای عمیق تری (در قابها) به اندازه 140 میلیمتر (شکل 1) ایجاد شده و برای سازه هایی با دهانه هایی کمتر از 22 متر در استاندارد ASTM-A 796.A 796 M مورد استفاده قرار گرفته اند. (استاندارد 1999,ASTM).
طراحی پلهای خاکی- فولادی، بر اندرکنش ترکیبی میان فشارهای خاک و جابه
جائیهای دیواره کانال، بنا نهاده شده است. (معیارهای) حدود طراحی و الزامات آئین نامه ای تعیین شده و به اثبات رسیده اند؛ به Abdel- sayed و همکاران (Adbel- Sayed) و همکاران، 1993) آئین نامه طراحی پلهای بزرگراه کانادا
حداقل عمق پوشش خاکی بر روی پلهای خاکی- فولادی
خلاصه: پهنای خاکی- فولادی از قابهای فولادی موجودار و انعطاف پذیر پوشانده شده درون خاک دانه ای خوب متراکم ساخته شده اند.
طراحی آنها براساس اندرکنش ترکیبی میان فشارهای خاک و جابه جایی های دیواره کانال انجام می شود. گسیختگی سازه ممکنست به سبب گسیختگی برشی یا کششی در پوشش خاکی روی کانال فولادی آغاز شود. بکارگیری ملاحظات طراحی ارائه شده در آئین نامه های مختلف، مانند آئین نامه طراحی پلهای بزرگراه کانادا، در جلوگیری از برخی مشکلات مربوط به گسیختگی خاک روی پلهای خاکی- فولادی با در نظر گرفتن حداقل عمق پوشش خاکی روی تاج کانال با توجه به شکل هندسی آن، موفقیت آمیز بوده است. با این وجود، الزامات آئین نامه موجود برای حداقل عمق پوشش جهت حداکثر دهانه به طول 62/7 متر و استفاده از قابهای سخت نشده با عمق اعوجاج 51 میلیمتر، بسط داده شده اند. اثر طول دهانه های بزرگتر یا بکارگیری قابهای موجدار صلب تر، پیشتر بررسی نشده و موضوع این مقاله است. مطالعه حاضر، جهت بررسی مجدد گسیختگی های ممکن خاک به سبب بارهای زنده وارده در مرکز (یعنی بارهایی که بصورت متقارن، حدودا در وسط دهانه کانال وارد می شوند) یا بارهای زنده خارج از مرکز، از تحلیل اجزاء محدود استفاده می کند. این بررسی، مربوط به کانالهای دایروی با دهانه بزرگتر از 24/15 متر و قوسهای 3/21 متری با موجهای عمیق است. نتیجه حاصله این است که علاوه بر هندسه کانال، ابعاد واقعی دهانه نیز بایستی جهت تعیین عمق لازم برای پوشش خاکی مورد توجه قرار گیرد.
معرفی: پلهای خاکی- فولادی از قابهای فولادی موجدار و انعطاف پذیر پوشانده شده در خاک دانه ای خوب متراکم شده ساخته شده اند. این پلها با دهانه هایی به طول حداکثر 62/7 متر با استفاده از قابهای فولادی با عمق اعوجاج (موج) 51 میلی متر ساخته شده اند در حالیکه بخشهای خاصی مانند سخت کننده ها برای دهانه های بزرگ بکار رفته اند. اخیرا، موجهای عمیق تری (در قابها) به اندازه 140 میلیمتر (شکل 1) ایجاد شده و برای سازه هایی با دهانه هایی کمتر از 22 متر در استاندارد ASTM-A 796.A 796 M مورد استفاده قرار گرفته اند. (استاندارد 1999,ASTM).
طراحی پلهای خاکی- فولادی، بر اندرکنش ترکیبی میان فشارهای خاک و جابه
جائیهای دیواره کانال، بنا نهاده شده است. (معیارهای) حدود طراحی و الزامات آئین نامه ای تعیین شده و به اثبات رسیده اند؛ به Abdel- sayed و همکاران (Adbel- Sayed) و همکاران، 1993) آئین نامه طراحی پلهای بزرگراه کانادا
(2001 , CSA- CHBDC) و مشخصات استاندارد پلهای بزرگراه منتشر شده توسط آشتو (2001, AASHTO) مراجعه شود.
یکی از معیارهای گسیختگی برای چنین سازه هایی در شرایطی که پوشش خاکی روی مجرای فولادی کافی نباشد، گسیختگی خاک بخاطر برش و / یا کشش ایجاد شده در آن می باشد. بکارگیری ملاحظات طراحی ارائه شده شده در آئین نامه های مختلف، مانند آئین نامه طراحی پلهای بزرگراه (1992, OHBDC) Ontario، آشتو (آشتو، 2001) یا آئین نامه طراحی پلهای بزرگراه کانادا، در جلوگیری از برخی مشکلات مربوط به گسیختگی خاک روی پلهای خاکی- فولادی با در نظر گرفتن حداقل عمق پوشش خاکی روی تاج کانال، موفقیت آمیز بوده است.
این الزامات، در اصل تجربی بوده و از آن پس، براساس تحلیل اجزاء محدود (1981, Hafez) با در نظر گرفتن شکل هندسی کانال و بارهای محوری، کامیون OHBDC جهت طراحی (شکل 2)، اصلاح شوند (1983a, Abdel- Sagal, Hafez). در نتیجه، حداقل عمق پوشش مورد نیاز (h) در دومین ویرایش از (1983,OHBDC)OHBDC، بزرگترین مقدار از بین یا با حداقل مقدار 6/0 متر بود که براساس شکل 3، D,S به ترتیب دهانه موثر و خیز (برآمدگی) کانال هستند. با وقوف به دست وپاگیر بودن الزامات فوق بخصوص در مورد کانالهای دهانه کوتاه به شکل بیضی افقی، سومین ویرایش (1992,OHBDC) OHBDC شرط پیشین را به کاهش داد.
همچنین الزامات مشابهی در آئین نامه فعلی طراحی پلهای بزرگراه کانادا مشخص شده اند (2001,CSA-CHBDC) و در حال حاضر بدون توجه به نیمرخ اعوجاج صفحه، قابل استفاده برای تمام سازه های خاکی فولادی می باشند. هر چند، بایستی به این نکته اشاره نمود که تمامی الزامات برای حداقل عمق پوشش، برای حداکثر دهانه 62/7 متری و استفاده از قابهای سخت نشده با عمق اعوجاج 51 میلیمتری ایجاد شده اند. تاثیر دهانه های بلندتر و / یا استفاده از قابهای موجدار صلب تر یا بیشتر مورد بررسی قرار نگرفته و موضوع این مقاله می باشد که به بررسی مجدد مسئله گسیختگی امکان پذیر در پوشش خاکی بعلت بار زنده واقع در مرکز یا خارج از مرکز که بر خاکریز اعمال می شود،
می پردازد. در اینجا گسیختگی پوشش خاکی برای کانالهای دایروی با دهانه های کوتاهتر از 24/15 متر و قوسهای 3/21 متری دارای، قابهایی با موجهای عمیق (شکل 1) مورد بررسی قرار گرفته است. مشاهدات ارائه شده مبتنی بر نتایج تحلیل اجزاء محدود انجام شده توسط
Hafez در دانشگاه وینزور (1981, Hafez) (به بخش بعدی مراجعه شود) و نیز بکارگیری آئین نامه جامع و عمومی ABAQUS [نرم افزار اجزاء محدود، نسخه 1/6 (1998)، R.I. , Providence, Sorenson, Karlssen, Hibbit] و در نظر گرفتن بار کامیون مطرح شده توسط 1992, OHBDC می باشند (شکل 2).
شکل
شکل 1- انواع قابهای کانال، ابعاد به میلیمتر بیان شده اند موج استاندارد 51 میلیمتری (2 اینچی)، قاب (I)؛ (b) موج استاندارد 1400 میلیمتری، قاب (II)؛ (c) قابهای موجدار سخت شده؛ قاب (III)؛ و (d) قابهای موجدار سخت شده با پرکردگی بتنی، قاب (IV).
شکل 2- بارهای محوری کامیون OHBDC برای طراحی (1992,OHBDC)، (a) نما (b) پلان
شکل 3- تعریف و توضیح S,D برای اشکال مختلف سطح مقطع کانال، (a) دایره، (b) نیم قوس، (c) بیضی قائم، (d) بیضی افقی، (e) قوس Re-entrant و (f) قوس لوله ای
شکل 4- مدل اجزاء محدود برای کانالهای دایروی (1981, Hafez).
شکل 5- تعریف خروج از محوریت e برای موارد بارگذاری تحت بررسی، (a) در صورت اعمال یک بار محوری (b) در صورت اعمال یک بار محوری
پلهای خاکی- فولادی تحت بارگذاری، با در نظر گرفتن عوامل و بار اجرا و تغییر مجاز بار دینامیکی طراحی می شوند. همچنین ضوابط و معیارهای مختلفی از گسیختگی در خاکریز و قابهای فولادی مورد بررسی قرار میگیرد. (2001, AASHTO, 1992,OHBDC). با این وجود، هدف مقاله حاضر، به بررسی گسیختگی خاک بالاسری کانال محدود شده و تنها به توضیح استفاده از خاکریزهای دانه های مجاز و خوب متراکم شده می پردازد (1992,OHBDC). این مقاله، رفتار پوشش خاک کم عمق را مورد بررسی قرار داده و از الزامات عمومی و عملی برای حداقل عمق پوشش خاکی را بخصوص برای پلهای خاکی- فولادی با دانه های بزرگ ارائه می نماید. طراحی سازه ای دیواره های کانال و همچنین ظرفیت باربری خاک در حوزه بررسی حاضر نمی گنجد.
شکل 6- سایر شکست برای مدل موهر- ؟